Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.836
Filtrar
2.
COPD ; 21(1): 2329282, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38622983

RESUMO

COPD is an inflammatory lung disease that limits airflow and remodels the pulmonary vascular system. This study delves into the therapeutic potential and mechanistic underpinnings of Panax notoginseng Saponins (PNS) in alleviating inflammation and pulmonary vascular remodeling in a COPD rat model. Symmap and ETCM databases provided Panax notoginseng-related target genes, and the CTD and DisGeNET databases provided COPD-related genes. Intersection genes were subjected to protein-protein interaction analysis and pathway enrichment to identify downstream pathways. A COPD rat model was established, with groups receiving varying doses of PNS and a Roxithromycin control. The pathological changes in lung tissue and vasculature were examined using histological staining, while molecular alterations were explored through ELISA, RT-PCR, and Western blot. Network pharmacology research suggested PNS may affect the TLR4/NF-κB pathway linked to COPD development. The study revealed that, in contrast to the control group, the COPD model exhibited a significant increase in inflammatory markers and pathway components such as TLR4, NF-κB, HIF-1α, VEGF, ICAM-1, SELE mRNA, and serum TNF-α, IL-8, and IL-1ß. Treatment with PNS notably decreased these markers and mitigated inflammation around the bronchi and vessels. Taken together, the study underscores the potential of PNS in reducing lung inflammation and vascular remodeling in COPD rats, primarily via modulation of the TLR4/NF-κB/HIF-1α/VEGF pathway. This research offers valuable insights for developing new therapeutic strategies for managing and preventing COPD.


Assuntos
Panax notoginseng , Doença Pulmonar Obstrutiva Crônica , Saponinas , Ratos , Animais , Saponinas/farmacologia , Saponinas/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , NF-kappa B/metabolismo , Panax notoginseng/metabolismo , Receptor 4 Toll-Like/genética , Fator A de Crescimento do Endotélio Vascular/genética , Remodelação Vascular , Pulmão , Inflamação/tratamento farmacológico
3.
Physiol Rep ; 12(7): e15999, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38610069

RESUMO

Pulmonary arterial hypertension (PAH) causes pulmonary vascular remodeling, increasing pulmonary vascular resistance (PVR) and leading to right heart failure and death. Matrix stiffening early in the disease promotes remodeling in pulmonary artery smooth muscle cells (PASMCs), contributing to PAH pathogenesis. Our research identified YAP and TAZ as key drivers of the mechanobiological feedback loop in PASMCs, suggesting targeting them could mitigate remodeling. However, YAP/TAZ are ubiquitously expressed and carry out diverse functions, necessitating a cell-specific approach. Our previous work demonstrated that targeting non-canonical IKB kinase TBK1 reduced YAP/TAZ activation in human lung fibroblasts. Here, we investigate non-canonical IKB kinases TBK1 and IKKε in pulmonary hypertension (PH) and their potential to modulate PASMC pathogenic remodeling by regulating YAP/TAZ. We show that TBK1 and IKKε are activated in PASMCs in a rat PH model. Inflammatory cytokines, elevated in PAH, activate these kinases in human PASMCs. Inhibiting TBK1/IKKε expression/activity significantly reduces PAH-associated PASMC remodeling, with longer-lasting effects on YAP/TAZ than treprostinil, an approved PAH therapy. These results show that non-canonical IKB kinases regulate YAP/TAZ in PASMCs and may offer a novel approach for reducing vascular remodeling in PAH.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Animais , Humanos , Ratos , Quinase I-kappa B , Miócitos de Músculo Liso , Artéria Pulmonar , Remodelação Vascular
4.
Sci Rep ; 14(1): 8670, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622371

RESUMO

Hypoxic pulmonary hypertension (HPH) is a pulmonary vascular disease primarily characterized by progressive pulmonary vascular remodeling in a hypoxic environment, posing a significant clinical challenge. Leveraging data from the Gene Expression Omnibus (GEO) and human autophagy-specific databases, osteopontin (OPN) emerged as a differentially expressed gene, upregulated in cardiovascular diseases such as pulmonary arterial hypertension (PAH). Despite this association, the precise mechanism by which OPN regulates autophagy in HPH remains unclear, prompting the focus of this study. Through biosignature analysis, we observed significant alterations in the PI3K-AKT signaling pathway in PAH-associated autophagy. Subsequently, we utilized an animal model of OPNfl/fl-TAGLN-Cre mice and PASMCs with OPN shRNA to validate these findings. Our results revealed right ventricular hypertrophy and elevated mean pulmonary arterial pressure (mPAP) in hypoxic pulmonary hypertension model mice. Notably, these effects were attenuated in conditionally deleted OPN-knockout mice or OPN-silenced hypoxic PASMCs. Furthermore, hypoxic PASMCs with OPN shRNA exhibited increased autophagy compared to those in hypoxia alone. Consistent findings from in vivo and in vitro experiments indicated that OPN inhibition during hypoxia reduced PI3K expression while increasing LC3B and Beclin1 expression. Similarly, PASMCs exposed to hypoxia and PI3K inhibitors had higher expression levels of LC3B and Beclin1 and suppressed AKT expression. Based on these findings, our study suggests that OPNfl/fl-TAGLN-Cre effectively alleviates HPH, potentially through OPN-mediated inhibition of autophagy, thereby promoting PASMCs proliferation via the PI3K-AKT signaling pathway. Consequently, OPN emerges as a novel therapeutic target for HPH.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Camundongos , Humanos , Animais , Hipertensão Pulmonar/tratamento farmacológico , Osteopontina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Artéria Pulmonar/metabolismo , Hipóxia/complicações , Hipóxia/genética , Hipóxia/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , RNA Interferente Pequeno/metabolismo , Autofagia/genética , Proliferação de Células , Miócitos de Músculo Liso/metabolismo , Remodelação Vascular
5.
Arterioscler Thromb Vasc Biol ; 44(5): 1065-1085, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38572650

RESUMO

Blood vessels are subjected to complex biomechanical loads, primarily from pressure-driven blood flow. Abnormal loading associated with vascular grafts, arising from altered hemodynamics or wall mechanics, can cause acute and progressive vascular failure and end-organ dysfunction. Perturbations to mechanobiological stimuli experienced by vascular cells contribute to remodeling of the vascular wall via activation of mechanosensitive signaling pathways and subsequent changes in gene expression and associated turnover of cells and extracellular matrix. In this review, we outline experimental and computational tools used to quantify metrics of biomechanical loading in vascular grafts and highlight those that show potential in predicting graft failure for diverse disease contexts. We include metrics derived from both fluid and solid mechanics that drive feedback loops between mechanobiological processes and changes in the biomechanical state that govern the natural history of vascular grafts. As illustrative examples, we consider application-specific coronary artery bypass grafts, peripheral vascular grafts, and tissue-engineered vascular grafts for congenital heart surgery as each of these involves unique circulatory environments, loading magnitudes, and graft materials.


Assuntos
Prótese Vascular , Hemodinâmica , Humanos , Animais , Modelos Cardiovasculares , Falha de Prótese , Estresse Mecânico , Fenômenos Biomecânicos , Mecanotransdução Celular , Implante de Prótese Vascular/efeitos adversos , Desenho de Prótese , Oclusão de Enxerto Vascular/fisiopatologia , Oclusão de Enxerto Vascular/etiologia , Remodelação Vascular
6.
Acta Neuropathol Commun ; 12(1): 45, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509621

RESUMO

Interactions between extracellular matrix (ECM) proteins and ß1 integrins play an essential role maintaining vascular integrity in the brain, particularly under vascular remodeling conditions. As blood vessels in the spinal cord are reported to have distinct properties from those in the brain, here we examined the impact of ß1 integrin inhibition on spinal cord vascular integrity, both under normoxic conditions, when blood vessels are stable, and during exposure to chronic mild hypoxia (CMH), when extensive vascular remodeling occurs. We found that a function-blocking ß1 integrin antibody triggered a small degree of vascular disruption in the spinal cord under normoxic conditions, but under hypoxic conditions, it greatly enhanced (20-fold) vascular disruption, preferentially in spinal cord white matter (WM). This resulted in elevated microglial activation as well as marked loss of myelin integrity and reduced density of oligodendroglial cells. To understand why vascular breakdown is localized to WM, we compared expression levels of major BBB components of WM and grey matter (GM) blood vessels, but this revealed no obvious differences. Interestingly however, hypoxyprobe staining demonstrated that the most severe levels of spinal cord hypoxia induced by CMH occurred in the WM. Analysis of brain tissue revealed a similar preferential vulnerability of WM tracts to show vascular disruption under these conditions. Taken together, these findings demonstrate an essential role for ß1 integrins in maintaining vascular integrity in the spinal cord, and unexpectedly, reveal a novel and fundamental difference between WM and GM blood vessels in their dependence on ß1 integrin function during hypoxic exposure. Our data support the concept that the preferential WM vulnerability described may be less a result of intrinsic differences in vascular barrier properties between WM and GM, and more a consequence of differences in vascular density and architecture.


Assuntos
Substância Branca , Humanos , Substância Branca/metabolismo , Integrina beta1/metabolismo , Remodelação Vascular/fisiologia , Medula Espinal/metabolismo , Substância Cinzenta/metabolismo , Hipóxia/metabolismo
7.
Drug Des Devel Ther ; 18: 767-780, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495631

RESUMO

Purpose: Pulmonary arterial hypertension (PAH) is a devastating disease with little effective treatment. The proliferation of pulmonary artery smooth muscle cells (PASMCs) induced by the nuclear factor-κB (NF-κB) signaling activation plays a pivotal role in the pathogenesis of PAH. Forsythoside B (FTS•B) possesses inhibitory effect on NF-κB signaling pathway. The present study aims to explore the effects and mechanisms of FTS•B in PAH. Methods: Sprague-Dawley rats received monocrotaline (MCT) intraperitoneal injection to establish PAH model, and FTS•B was co-treated after MCT injection. Right ventricular hypertrophy and pulmonary artery pressure were measured by echocardiography and right heart catheterization, respectively. Histological alterations were detected by H&E staining and immunohistochemistry. FTS•B's role in PASMC proliferation and migration were evaluated by CCK-8 and wound healing assay. To investigate the underlying mechanisms, Western blotting, immunofluorescence staining and ELISA were conducted. The NF-κB activator PMA was used to investigate the role of NF-κB in FTS•B's protective effects against PAH. Results: FTS•B markedly alleviated MCT-induced vascular remodeling and pulmonary artery pressure, and improved right ventricular hypertrophy and survival. FTS•B also reversed PDGF-BB-induced PASMC proliferation and migration, decreased PCNA and CyclinD1 expression in vitro. The elevated levels of IL-1ß and IL-6 caused by MCT were decreased by FTS•B. Mechanistically, MCT-triggered phosphorylation of p65, IκBα, IKKα and IKKß was blunted by FTS•B. FTS•B also reversed MCT-induced nuclear translocation of p65. However, all these protective effects were blocked by PMA-mediated NF-κB activation. Conclusion: FTS•B effectively attenuates PAH by suppressing the NF-κB signaling pathway to attenuate vascular remodeling. FTS•B might be a promising drug candidate with clinical translational potential for the treatment of PAH.


Assuntos
Ácidos Cafeicos , Glucosídeos , Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Ratos , Animais , NF-kappa B/metabolismo , Monocrotalina/efeitos adversos , Ratos Sprague-Dawley , Remodelação Vascular , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/patologia , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/tratamento farmacológico , Transdução de Sinais
8.
Int Heart J ; 65(2): 318-328, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556339

RESUMO

This study investigated the effects of hydroxycitric acid tripotassium hydrate on right ventricular function, myocardial and pulmonary vascular remodeling in rats with pulmonary hypertension, and possible mechanisms. METHODS: Pulmonary hypertension was induced in male Sprague-Dawley rats by a single subcutaneous injection of monocrotaline or hypoxic chamber. In vivo, inflammatory cytokine (including TNF-α, IL-1ß, IL-6, and TGF-ß, the level of SOD) expression, superoxide dismutase and hydrogen peroxide levels, and p-IκBα and p65 expressions were detected. In vitro, pulmonary artery smooth muscle cell proliferation and migration, ROS production, and hypoxia-inducible factor-1 expression were also studied. RESULTS: Hydroxycitric acid tripotassium hydrate decreased right ventricular systolic pressure and reduced right ventricular fibrosis and pulmonary vascular remodeling in rats with two kinds of pulmonary hypertension. Moreover, the expression of both inflammatory and oxidative stress factors was effectively reduced, and the p65 signaling pathway was found to be inhibited in this study. Additionally, hydroxycitric acid tripotassium hydrate inhibited human pulmonary artery smooth cell proliferation and migration in vitro. CONCLUSIONS: This study shows that hydroxycitric acid tripotassium hydrate can alleviate pulmonary hypertension caused by hypoxia and monocycloline in rats, improve remodeling of the right ventricle and pulmonary artery, and inhibit pulmonary artery smooth muscle cell proliferation and migration. The protective effects may be achieved by regulating inflammation and oxidative stress through the p65 signaling pathway.


Assuntos
Citratos , Hipertensão Pulmonar , Ratos , Animais , Masculino , Humanos , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/induzido quimicamente , Monocrotalina/efeitos adversos , Ratos Sprague-Dawley , Remodelação Vascular , Hipóxia/complicações , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo , Artéria Pulmonar , Miócitos de Músculo Liso/metabolismo , Proliferação de Células , Modelos Animais de Doenças
9.
Eur J Pharmacol ; 970: 176483, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38479721

RESUMO

Stromal derived factor 1 (SDF1) has been shown to be involved in the pathogenesis of pulmonary artery hypertension (PAH). However, the detailed molecular mechanisms remain unclear. To address this, we utilized primary cultured rat pulmonary artery smooth muscle cells (PASMCs) and monocrotaline (MCT)-induced PAH rat models to investigate the mechanisms of SDF1 driving PASMCs proliferation and pulmonary arterial remodeling. SDF1 increased runt-related transcription factor 2 (Runx2) acetylation by Calmodulin (CaM)-dependent protein kinase II (CaMKII)-dependent HDAC4 cytoplasmic translocation, elevation of Runx2 acetylation conferred its resistance to proteasome-mediated degradation. The accumulation of Runx2 further upregulated osteopontin (OPN) expression, finally leading to PASMCs proliferation. Blocking SDF1, suppression of CaMKII, inhibition the nuclear export of HDAC4 or silencing Runx2 attenuated pulmonary arterial remodeling and prevented PAH development in MCT-induced PAH rat models. Our study provides novel sights for SDF1 induction of PASMCs proliferation and suggests that targeting SDF1/CaMKII/HDAC4/Runx2 axis has potential value in the management of PAH.


Assuntos
Hipertensão Arterial Pulmonar , Ratos , Animais , Hipertensão Arterial Pulmonar/patologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Remodelação Vascular/fisiologia , Proliferação de Células , Artéria Pulmonar/patologia , Hipertensão Pulmonar Primária Familiar/patologia , Miócitos de Músculo Liso , Monocrotalina/efeitos adversos , Modelos Animais de Doenças , Histona Desacetilases/metabolismo
10.
Eur J Pharmacol ; 970: 176492, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38503401

RESUMO

Pulmonary arterial hypertension (PAH) is a progressive vascular disease characterized by remodeling of the pulmonary vasculature and elevated pulmonary arterial pressure, ultimately leading to right heart failure and death. Despite its clinical significance, the precise molecular mechanisms driving PAH pathogenesis warrant confirmation. Compelling evidence indicates that during the development of PAH, pulmonary vascular cells exhibit a preference for energy generation through aerobic glycolysis, known as the "Warburg effect", even in well-oxygenated conditions. This metabolic shift results in imbalanced metabolism, increased proliferation, and severe pulmonary vascular remodeling. Exploring the Warburg effect and its interplay with glycolytic enzymes in the context of PAH has yielded current insights into emerging drug candidates targeting enzymes and intermediates involved in glucose metabolism. This sheds light on both opportunities and challenges in the realm of antiglycolytic therapy for PAH.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Humanos , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Pulmonar Primária Familiar , Glicólise , Pulmão/metabolismo , Artéria Pulmonar/metabolismo , Remodelação Vascular
11.
Sci Adv ; 10(11): eadg9278, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38478616

RESUMO

Canonical Wnt and sphingosine-1-phosphate (S1P) signaling pathways are highly conserved systems that contribute to normal vertebrate development, with key consequences for immune, nervous, and cardiovascular system function; despite these functional overlaps, little is known about Wnt/ß-catenin-S1P cross-talk. In the vascular system, both Wnt/ß-catenin and S1P signals affect vessel maturation, stability, and barrier function, but information regarding their potential coordination is scant. We report an instance of functional interaction between the two pathways, including evidence that S1P receptor 1 (S1PR1) is a transcriptional target of ß-catenin. By studying vascular smooth muscle cells and arterial injury response, we find a specific requirement for the ß-catenin carboxyl terminus, which acts to induce S1PR1, and show that this interaction is essential for vascular remodeling. We also report that pharmacological inhibition of the ß-catenin carboxyl terminus reduces S1PR1 expression, neointima formation, and atherosclerosis. These findings provide mechanistic understanding of how Wnt/ß-catenin and S1P systems collaborate during vascular remodeling and inform strategies for therapeutic manipulation.


Assuntos
Aterosclerose , Cateninas , Lisofosfolipídeos , Esfingosina/análogos & derivados , Humanos , Cateninas/metabolismo , beta Catenina/metabolismo , Remodelação Vascular , Transdução de Sinais
12.
Sheng Li Xue Bao ; 76(1): 33-44, 2024 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-38444129

RESUMO

The present study aimed to investigate the effect of human umbilical cord mesenchymal stem cells (MSCs)-derived exosomes (MSCs-Exo) on mice with hypoxic pulmonary hypertension (HPH). MSCs were isolated and cultured from human umbilical cords under aseptic conditions, and exosomes were extracted from the supernatants and identified. Healthy SPF C57BL/6 mice were randomly divided into three groups: normoxic group, hypoxic group, and hypoxic+MSCs-Exo group. Mice in the hypoxic group and the hypoxic+MSCs-Exo group were maintained for 28 d at an equivalent altitude of 5 000 m in a hypobaric chamber to establish HPH mouse model. The mice in the hypoxic+MSCs-Exo group were injected with MSCs-Exo via tail vein before hypoxia and on days 1, 3, 5 and 9 of hypoxia, and the mice in the other two groups were injected with PBS. At the end of the experiment, echocardiography was performed to detect pulmonary arterial acceleration time/pulmonary arterial ejection time ratio (PAAT/PET), right ventricular free wall thickness, and right ventricular hypertrophy index RV/(LV+S). HE staining was performed to observe the lung tissue morphology. EVG staining was performed to observe elastic fiber hyperplasia. Immunohistochemistry was performed to detect α smooth muscle actin (α-SMA) expression in lung tissue. Immunofluorescence staining was used to detect macrophage infiltration in lung tissue. qPCR was performed to detect IL-1ß and IL-33 in lung tissue, and cytometric bead array was performed to detect IL-10 secretion. Western blotting was used to detect the M1 macrophage marker iNOS, M2 macrophage marker Arg-1 and IL-33/ST2 pathway proteins in lung tissues. The results showed that hypoxia increased pulmonary artery pressure and pulmonary vascular remodeling, increased macrophage infiltration, IL-1ß and IL-33 expression (P < 0.05) and upregulated the IL-33/ST2 pathway (P < 0.05). Compared with the hypoxic group, MSCs-Exo treatment increased PAAT/PET (P < 0.05), decreased right ventricular free wall thickness (P < 0.05), right ventricular hypertrophy index RV/(LV+S) (P < 0.05), α-SMA expression in small pulmonary vessels (P < 0.05), and inflammatory factors including IL-1ß and IL-33 expression in lung tissue, however increased IL-10 secretion (P < 0.05). In addition, MSCs-Exo treatment upregulated Arg-1 and downregulated iNOS and IL-33/ST2 (P < 0.05). The results suggest that MSC-Exo may alleviate HPH through their immunomodulatory effects.


Assuntos
Exossomos , Hipertensão Pulmonar , Células-Tronco Mesenquimais , Humanos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Interleucina-10 , Interleucina-33 , Hipertrofia Ventricular Direita , Proteína 1 Semelhante a Receptor de Interleucina-1 , Remodelação Vascular , Hipóxia , Pulmão
13.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474074

RESUMO

Pulmonary hypertension (PH) associated with left heart disease (PH-LHD) is the most common form of PH. In PH-LHD, changes in the pulmonary vasculature are assumed to be mainly caused by pulmonary venous congestion. However, the underlying mechanisms of this form of PH are poorly understood. We aimed to establish a model of PH associated with pulmonary venous congestion. Wistar-Kyoto rats underwent partial occlusion of the left pulmonary vein to induce pulmonary venous congestion or sham surgery and were assessed at various time points post-surgery (3, 6, 9, 12 weeks). In vivo cardiopulmonary phenotyping was performed by using echocardiography along with heart catheterization. Histomorphometry methods were used to assess pulmonary vascular remodeling (e.g., wall thickness, degree of muscularization). Left pulmonary vein banding (PVB) resulted in mildly elevated right ventricular systolic pressure and moderate right ventricular hypertrophy. In PVB rats, small- and medium-sized pulmonary vessels in the left lung were characterized by increased wall thickness and muscularization. Taken together, our data demonstrate that left PVB-induced pulmonary venous congestion is associated with pulmonary vascular remodeling and mild PH.


Assuntos
Hiperemia , Hipertensão Pulmonar , Veias Pulmonares , Ratos , Animais , Remodelação Vascular , Ratos Endogâmicos WKY
14.
Drug Des Devel Ther ; 18: 475-491, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38405578

RESUMO

Purpose: The underlying causes of pulmonary arterial hypertension (PAH) often remain obscure. Addressing PAH with effective treatments presents a formidable challenge. Studies have shown that Hydroxysafflor yellow A (HSYA) has a potential role in PAH, While the mechanism underlies its protective role is still unclear. The study was conducted to investigate the potential mechanisms of the protective effects of HSYA. Methods: Using databases such as PharmMapper and GeneCards, we identified active components of HSYA and associated PAH targets, pinpointed intersecting genes, and constructed a protein-protein interaction (PPI) network. Core targets were singled out using Cytoscape for the development of a model illustrating drug-component-target-disease interactions. Intersection targets underwent analysis for Gene Ontology (GO) functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Selected components were then modeled for target interaction using Autodock and Pymol. In vivo validation in a monocrotaline-induced PAH (MCT-PAH) animal model was utilized to substantiate the predictions made by network pharmacology. Results: We associated HSYA with 113 targets, and PAH with 1737 targets, identifying 34 mutual targets for treatment by HSYA. HSYA predominantly affects 9 core targets. Molecular docking unveiled hydrogen bond interactions between HSYA and several PAH-related proteins such as ANXA5, EGFR, SRC, PPARG, PGR, and ESR1. Conclusion: Utilizing network pharmacology and molecular docking approaches, we investigated potential targets and relevant human disease pathways implicating HSYA in PAH therapy, such as the chemical carcinogenesis receptor activation pathway and the cancer pathway. Our findings were corroborated by the efficacious use of HSYA in an MCT-induced rat PAH model, confirming its therapeutic potential.


Assuntos
Chalcona , Chalcona/análogos & derivados , Medicamentos de Ervas Chinesas , Hipertensão Arterial Pulmonar , Quinonas , Humanos , Animais , Ratos , Hipertensão Arterial Pulmonar/induzido quimicamente , Hipertensão Arterial Pulmonar/tratamento farmacológico , Remodelação Vascular , Simulação de Acoplamento Molecular , Chalcona/farmacologia
15.
J Agric Food Chem ; 72(8): 4008-4022, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38373191

RESUMO

The vital pathological processes in intimal hyperplasia include aberrant vascular smooth muscle cells (VSMCs) proliferation, migration, and phenotypic switching. Rosmarinic acid (RA) is a natural phenolic acid compound. Nevertheless, the underlying mechanism of RA in neointimal hyperplasia is still unclear. Our analysis illustrated that miR-25-3p mimics significantly enhanced PDGF-BB-mediated VSMCs proliferation, migration, and phenotypic switching while RA partially weakened the effect of miR-25-3p. Mechanistically, we found that miR-25-3p directly targets sirtuin (SIRT6). The suppressive effect of the miR-25-3p inhibitor on PDGF-BB-induced VSMCs proliferation, migration, and phenotypic switch was partially eliminated by SIRT6 knockdown. The suppression of the PDGF-BB-stimulated Nrf2/ARE signaling pathway that was activated by the miR-25-3p inhibitor was exacerbated by the SIRT6 knockdown. In in vivo experiments, RA reduced the degree of intimal hyperplasia while miR-25-3p agomir partially reversed the suppressive effect of RA in vascular remodeling. Our results indicate that RA activates the Nrf2/ARE signaling pathway via the miR-25-3p/SIRT6 axis to inhibit vascular remodeling.


Assuntos
MicroRNAs , Sirtuínas , Humanos , Becaplermina/farmacologia , Proliferação de Células , Hiperplasia/metabolismo , Hiperplasia/patologia , 60556 , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Remodelação Vascular , Músculo Liso Vascular , Movimento Celular , Transdução de Sinais , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos de Músculo Liso , Células Cultivadas , Sirtuínas/metabolismo , Sirtuínas/farmacologia
16.
Biomed Pharmacother ; 172: 116202, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38330707

RESUMO

Hypoxia is a common feature of diabetic tissues, which highly correlates to the progression of diabetes. The formation of hypoxic context is induced by disrupted oxygen homeostasis that is predominantly driven by vascular remodeling in diabetes. While different types of vascular impairments have been reported, the specific features and underlying mechanisms are yet to be fully understood. Under hypoxic condition, cells upregulate hypoxia-inducible factor-1α (HIF-1α), an oxygen sensor that coordinates oxygen concentration and cell metabolism under hypoxic conditions. However, diabetic context exploits this machinery for pathogenic functions. Although HIF-1α protects cells from diabetic insult in multiple tissues, it also jeopardizes cell function in the retina. To gain a deeper understanding of hypoxia in diabetic complications, we focus on the formation of tissue hypoxia and the outcomes of HIF-1α dysregulation under diabetic context. Hopefully, this review can provide a better understanding on hypoxia biology in diabetes.


Assuntos
Diabetes Mellitus , Humanos , Hipóxia/complicações , Retina , Remodelação Vascular , Oxigênio
17.
Stroke ; 55(3): 558-568, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38323422

RESUMO

BACKGROUND: Blood-based biomarkers have the potential to reflect cerebrovascular signaling after microvascular injury; yet, the detection of cell-specific signaling has proven challenging. Microvesicles retain parental cell surface antigens allowing detection of cell-specific signaling encoded in their cargo. In ischemic stroke, the progression of pathology involves changes in microvascular signaling whereby brain pericytes, perivascular cells wrapping the microcapillaries, are one of the early responders to the ischemic insult. Intercepting the pericyte signaling response peripherally by isolating pericyte-derived microvesicles may provide not only diagnostic information on microvascular injury but also enable monitoring of important pathophysiological mechanisms. METHODS: Plasma samples were collected from patients with acute ischemic stroke (n=39) at 3 time points after stroke onset: 0 to 6 hours, 12 to 24 hours, and 2 to 6 days, and compared with controls (n=39). Pericyte-derived microvesicles were isolated based on cluster of differentiation 140b expression and quantified by flow cytometry. The protein content was evaluated using a proximity extension assay, and vascular signaling pathways were examined using molecular signature hallmarks and gene ontology. RESULTS: In this case-control study, patients with acute ischemic stroke showed significantly increased numbers of pericyte-derived microvesicles (median, stroke versus controls) at 12 to 24 hours (1554 versus 660 microvesicles/µL; P=0.0041) and 2 to 6 days after stroke (1346 versus 660 microvesicles/µL; P=0.0237). Their proteome revealed anti-inflammatory properties mediated via downregulation of Kirsten rat sarcoma virus and IL (interleukin)-6/JAK/STAT3 signaling at 0 to 6 hours, but proangiogenic as well as proinflammatory signals at 12 to 24 hours. Between 2 and 6 days, proteins were mainly associated with vascular remodeling as indicated by activation of Hedgehog signaling in addition to proangiogenic signals. CONCLUSIONS: We demonstrate that the plasma of patients with acute ischemic stroke reflects (1) an early and time-dependent increase of pericyte-derived microvesicles and (2) changes in the protein cargo of microvesicles over time indicating cell signaling specifically related to inflammation and vascular remodeling.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , AVC Isquêmico/patologia , Pericitos/patologia , Remodelação Vascular , Estudos de Casos e Controles , Proteínas Hedgehog/metabolismo , Encéfalo/patologia , Acidente Vascular Cerebral/patologia , Transdução de Sinais , Biomarcadores/metabolismo
18.
Cardiovasc Toxicol ; 24(2): 158-170, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38310188

RESUMO

High expression of the zinc finger X-chromosomal protein (ZFX) correlates with proliferation, aggressiveness, and development in many types of cancers. In the current report, we investigated the efficacy of ZFX in mouse pulmonary artery smooth muscle cells (PASMCs) proliferation during pulmonary arterial hypertension (PAH). PASMCs were cultured in hypoxic conditions. Real-time PCR and western blotting were conducted to detect the expression of ZFX. Cell proliferation, apoptosis, migration, and invasion were, respectively, measured by CCK-8, flow cytometry, wound scratchy, and transwell assays. Glycolytic ability was validated by the extracellular acidification rate and oxygen consumption rate. Transcriptome sequencing technology was used to explore the genes affected by ZFX knockdown. Luciferase and chromatin immunoprecipitation assays were utilized to verify the possible binding site of ZFX and YAP1. Mice were subjected to hypoxia for 21 days to induce PAH. The right ventricular systolic pressure (RVSP) was measured and ratio of RV/LV + S was calculated. The results show that ZFX was increased in hypoxia-induced PASMCs and mice. ZFX knockdown inhibited the proliferation, migration, and invasion of PASMC. Using RNA sequencing, we identify glycolysis and YAP as a key signaling of ZFX. ZFX knockdown inhibited Glycolytic ability. ZFX strengthened the transcription activity of YAP1, thereby regulating the YAP signaling. YAP1 overexpression reversed the effect of ZFX knockdown on hypoxia-treated PASMCs. In conclusion, ZFX knockdown protected mice from hypoxia-induced PAH injury. ZFX knockdown dramatically reduced RVSP and RV/(LV + S) in hypoxia-treated mice.


Assuntos
Fatores de Transcrição Kruppel-Like , Hipertensão Arterial Pulmonar , Remodelação Vascular , Proteínas de Sinalização YAP , Animais , Camundongos , Movimento Celular/genética , Proliferação de Células , Células Cultivadas , Hipóxia/complicações , Pulmão/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/prevenção & controle , Hipertensão Arterial Pulmonar/metabolismo , Artéria Pulmonar/metabolismo , Proteínas de Sinalização YAP/genética , Proteínas de Sinalização YAP/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo
19.
J Biomech Eng ; 146(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38345599

RESUMO

Maternal mortality due to cardiovascular disease is a rising concern in the U.S. Pregnancy triggers changes in the circulatory system, potentially influencing the structure of the central vasculature. Evidence suggests a link between a woman's pregnancy history and future cardiovascular health, but our understanding remains limited. To fill this gap, we examined the passive mechanics of the murine ascending thoracic aorta during late gestation. By performing biaxial mechanical testing on the ascending aorta, we were able to characterize the mechanical properties of both control and late-gestation tissues. By examining mechanical, structural, and geometric properties, we confirmed that remodeling of the aortic wall occurred. Morphological and mechanical properties of the tissue indicated an outward expansion of the tissue, as reflected in changes in wall thickness (∼12% increase) and luminal diameter (∼6% increase) at its physiologically loaded state in the pregnant group. With these geometric adaptations and despite increased hemodynamic loads, pregnancy did not induce significant changes in the tensile wall stress at the similar physiological pressure levels of the pregnant and control tissues. The alterations also included reduced intrinsic stiffness in the circumferential direction (∼18%) and reduced structural stiffness (∼26%) in the pregnant group. The observed vascular remodeling maintained the elastic stored energy of the aortic wall under systolic loads, indicating preservation of vascular function. Data from our study of pregnancy-related vascular remodeling will provide valuable insights for future investigations of maternal cardiovascular health.


Assuntos
Aorta Torácica , Remodelação Vascular , Feminino , Humanos , Animais , Camundongos , Gravidez , Aorta , Estresse Mecânico
20.
J Biomech Eng ; 146(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38421341

RESUMO

Chronic hypoxia plays a central role in diverse pulmonary pathologies, but its effects on longitudinal changes in the biomechanical behavior of proximal pulmonary arteries remain poorly understood. Similarly, effects of normoxic recovery have not been well studied. Here, we report hypoxia-induced changes in composition, vasoactivity, and passive biaxial mechanics in the main branch pulmonary artery of male C57BL/6J mice exposed to 10% FiO2 for 1, 2, or 3 weeks. We observed significant changes in extracellular matrix, and consequently wall mechanics, as early as 1 week of hypoxia. While circumferential stress and stiffness returned toward normal values by 2-3 weeks of hypoxia, area fractions of cytoplasm and thin collagen fibers did not return toward normal until after 1 week of normoxic recovery. By contrast, elastic energy storage and overall distensibility remained reduced after 3 weeks of hypoxia as well as following 1 week of normoxic recovery. While smooth muscle and endothelial cell responses were attenuated under hypoxia, smooth muscle but not endothelial cell responses recovered following 1 week of subsequent normoxia. Collectively, these data suggest that homeostatic processes were unable to preserve or restore overall function, at least over a brief period of normoxic recovery. Longitudinal changes are critical in understanding large pulmonary artery remodeling under hypoxia, and its reversal, and will inform predictive models of vascular adaptation.


Assuntos
Hipóxia , Artéria Pulmonar , Camundongos , Animais , Masculino , Camundongos Endogâmicos C57BL , Hipóxia/patologia , Músculo Liso , Remodelação Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...